State-dependent verapamil block of the cloned human Ca(v)3.1 T-type Ca(2+) channel.
نویسندگان
چکیده
Verapamil is a potent phenylalkylamine antihypertensive believed to exert its therapeutic effect primarily by blocking high-voltage-activated L-type calcium channels. It was the first clinically used calcium channel blocker and remains in clinical use, although it has been eclipsed by other calcium channel blockers because of its short half-life and interactions with other channels. In addition to blocking L-type channels, it has been reported to block T-type (low-voltage activated) calcium channels. This type of cross-reactivity is likely to be beneficial in the effective control of blood pressure. Although the interactions of T channels with a number of drugs have been described, the mechanisms by which these agents modulate channel activity are largely unknown. Most calcium channel blockers exhibit state-dependence (i.e., preferential binding to certain channel conformations), but little is known about state-dependent verapamil block of T channels. We stably expressed human Ca(v)3.1 T-type channels in human embryonic kidney 293 cells and studied the state-dependence of the drug with macroscopic and gating currents. Verapamil blocked currents at micromolar concentrations at polarized potentials similar to those reported for L-type channels, although unlike for L-type currents, it did not affect current time course. The drug exhibited use-dependence and significantly slowed the apparent recovery from inactivation. Current inhibition was dependent on potential. This dependence was restricted to negative potentials, although all data were consistent with verapamil binding in the pore. Gating currents were unaffected by verapamil. We propose that verapamil achieves its inhibitory effect via occlusion of the channel pore associated with an open/inactivated conformation of the channel.
منابع مشابه
Block of human CaV3 channels by the diuretic amiloride.
Previous studies in native T-type currents have suggested the existence of distinct isoforms with dissimilar pharmacology. Amiloride was the first organic blocker to selectively block the native T-type calcium channel, but the potency and mechanism of block of this drug on the three recombinant T-type calcium channels (Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3) have not been systematically determined. T...
متن کاملRoscovitine inhibits CaV3.1 (T-type) channels by preferentially affecting closed-state inactivation.
T-type calcium channels (Ca(V)3) play an important role in many physiological and pathological processes, including cancerogenesis. Ca(V)3 channel blockers have been proposed as potential cancer treatments. Roscovitine, a trisubstituted purine, is a cyclin-dependent kinase (CDK) inhibitor that is currently undergoing phase II clinical trials as an anticancer drug and has been shown to affect ca...
متن کاملMechanism of myricetin stimulation of vascular L-type Ca2+ current.
An in-depth analysis of the mechanism of the L-type Ca(2+) current [I(Ca(L))] stimulation induced by myricetin was performed in rat tail artery myocytes using the whole-cell patch-clamp method. Myricetin increased I(Ca(L)) in a frequency-, concentration-, and voltage-dependent manner. At holding potentials (V(h)) of -50 and -90 mV, the pEC(50) values were 4.9 +/- 0.1 and 4.2 +/- 0.1, respective...
متن کاملT-type calcium channels are inhibited by fluoxetine and its metabolite norfluoxetine.
Fluoxetine, a widely used antidepressant that primarily acts as a selective serotonin reuptake inhibitor, also inhibits various neuronal ion channels. Using the whole-cell patch-clamp technique, we have examined the effects of fluoxetine and norfluoxetine, its major active metabolite, on cloned low-voltage-activated T-type calcium channels (T channels) expressed in tsA 201 cells. Fluoxetine inh...
متن کاملMechanisms and functional significance of inhibition of neuronal T-type calcium channels by isoflurane.
Previous data have indicated that T-type calcium channels (low-voltage activated T-channels) are potently inhibited by volatile anesthetics. Although the interactions of T-channels with a number of anesthetics have been described, the mechanisms by which these agents modulate channel activity, and the functional consequences of such interactions, are not well studied. Here, we used patch-clamp ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 70 2 شماره
صفحات -
تاریخ انتشار 2006